# FRUCTOSE-1,6-DIPHOSPHATE BINDING BY TWO FORMS OF PYRUVATE KINASE PURIFIED FROM HUMAN ERYTHROCYTES

H. GARREAU+,\*, S. COLUMELLI\*, J. MARIE+ and A. KAHN+

\*Institut de Pathologie Moléculaire, INSERM U.129, 24, Rue du Faubourg St Jacques, 75014 Paris and \*Unité 75 INSERM, 156, Rue de Vaugirard, Faculté Necker-Enfants Malades 75015 Paris, France

Received 21 February 1977
Revised version received 5 April 1977

#### 1. Introduction

Although kinetic properties of human erythrocyte pyruvate kinase (EC 2.7.1.40) have been extensively studied [1.2] little data about the binding of its ligands are available. Previous work showed that fructose-1.6diphosphate binding was enhanced by phosphoenolpyruvate [3]. The number of sites, however, remained unknown since the enzyme was not pure. We have recently described a new purification method [4] characterized by its rapidity and good yield. This method enabled us to separate two forms of red cell pyruvate kinase, as described in another paper [5]. The first form, designated as red cell pyruvate kinase I, is composed of 4 identical L-type subunits. The other (red cell pyruvate kinase II) is a heterotetramer made from 2 L-type subunits and 2 subunits called 'L', having a molecular weight slightly higher than that of the L-type subunits. We have demonstrated that the enzyme 'L<sub>4</sub>' (i.e., L-type pyruvate kinase from liver or red cell pyruvate kinase I) had specific activity twice that of the enzyme 'L2 L'2' (i.e., red cell pyruvate kinase II). A mild proteolytic digestion, using trypsin, resulted in an increase of the enzyme activity and in a transformation of L' into L-type subunits such that the trypsin-treated red cell enzyme II could no longer be distinguished from the enzyme I.

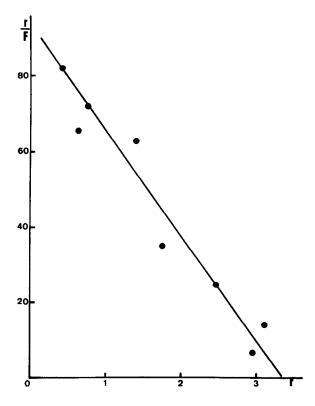
The purpose of this paper is to study the number and the properties of the fructose-1,6-diphosphate binding sites for both forms of human erythrocyte pyruvate kinase.

#### 2. Material and methods

[U-14 C] Fructose-6-phosphate (spec. act. 288 mCi/mmol) was purchased from Le Commissariat à l'Energie Atomique, France, [U-14 C] Fructose-1,6-diphosphate was prepared by incubation with ATP and fructose-6-phosphate kinase [3]. Radioactive fructose-1,6-diphosphate was isolated by ion-exchange chromatography. Purity was checked by column and paper chromatography.

Red cell pyruvate kinase I and II were stored at  $-70^{\circ}$ C as an ammonium sulfate precipitate. After centrifugation, ammonium sulfate precipitate was dissolved in the dialysis buffer (see below) and ammonium sulfate was removed by chromatography on a Sephadex G-25 fine column equilibrated with the dialysis buffer.

Protein assay was made by the method of Lowry et al. [6]. The molecular weights of the different forms of pyruvate kinase are given in another paper [5].


Equilibrium dialysis experiments were performed as previously described [3], during 15 h at 25°C, in triethanolamine buffer, pH 7.0, containing 5 mM EDTA, 50 mM KCl, 10 mM MgCl<sub>2</sub>, 50 mM  $\beta$ -mercaptoethanol and 300 mM sucrose. One compartment contained various fructose-1,6-diphosphate concentrations, while the other contained about 9  $\mu$ g pure pyruvate kinase. The total volume of each compartment was 0.3 ml. After dialysis, aliquots of each compartment were counted by liquid scintillation with Uni-

solve I (Koch-Light). Albumin (1 mg/ml) was present on each side on the membrane to avoid Gibbs-Donnan effect. The absence of fructose-1,6-diphosphate fixation by albumin has been verified. Enzyme activity remained constant during dialysis. Degradation of fructose-1,6-diphosphate during the dialysis experiment has been eliminated by chromatography on a Dowex-2-column, according to Bartlett [7].

### 3. Results

Fructose-1,6-diphosphate binding was studied on both pyruvate kinases I and II in the presence of 0.5 mM phosphoenolpyruvate.

With pyruvate kinase I the binding curve was hyperbolic. Scatchard plot was linear and showed a single class of sites with a dissociation constant of  $4 \times 10^{-8}$  M (fig.1). The extrapolation on the x-axis gave 3.4 binding sites for fructose-1,6-diphosphate. Since pyruvate kinase I is a tetramer [5], we may conclude that there are four binding sites/tetramer, that is to say, one/subunit.



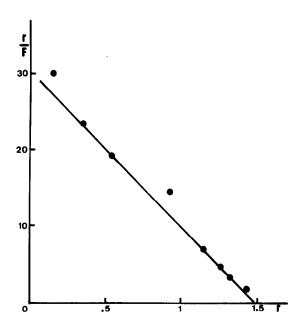



Fig. 2. Binding of fructose-1,6-diphosphate by erythrocyte pyruvate kinase II in the presence of 0.5 mM phosphoenol pyruvate. Data are expressed as r/F versus r. Concentration of tetramer is  $1.25 \times 10^{-7}$  M.

With pyruvate kinase II fructose-1,6-diphosphate binding was non-cooperative, as for pyruvate kinase I. There was only one class of sites. The dissociation constant was  $3.7 \times 10^{-8}$  M (fig.2). The extrapolation of the Scatchard plot on the x-axis gave 1.5 sites. Since red cell pyruvate kinase II, as well as pyruvate kinase I, is a tetramer [5], we may conclude that there are only two sites/tetramer and that only two subunits are able to bind fructose-1,6-diphosphate.

### 4. Discussion

These results agree with binding data previously reported on partially purified enzyme [3]. The dis-

Fig.1. Binding of fructose-1,6-diphosphate by erythrocyte pyruvate kinase I in the presence of 0.5 mM phosphoenol pyruvate. Data are expressed as r/F versus r, where r is the number of moles of fructose-1,6-diphosphate bound/mole tetramer (mol. wt 240 000), and F is free fructose-1,6-diphosphate concentration ( $10^{-6}$  M). Concentration of tetramer is  $1.10^{-7}$  M.

sociation constant for fructose-1,6-diphosphate is the same for the two forms of pyruvate kinase. This dissociation constant value,  $4 \times 10^{-8}$  M, is similar to the kinetic association constant previously reported,  $5 \times 10^{-8}$  M [8]. For both forms, I and II, no cooperativity in the binding of fructose-1,6-diphosphate is evident in the presence of phosphoenolpyruvate. This finding is consistent with kinetic properties [1] and is easily explained in terms of the allosteric model proposed by Monod et al. [9]: in the presence of high concentrations of the substrate phosphoenolpyruvate, allosteric equilibrium is shifted towards the R-state and the binding of the activator fructose-1,6-diphosphate is hyperbolic.

The main result is that there are four sites on pyruvate kinase I and only two sites on pyruvate kinase II. For pyruvate kinase I each subunit has one binding site for fructose-1,6-diphosphate. If we assume, according to Monod et al. [9], that oligomeric proteins are symmetric, we may postulate that each subunit of pyruvate kinase I possesses one catalytic site.

For pyruvate kinase II there are only two sites for fructose-1,6-diphosphate with a value of  $3.7 \times 10^{-8}$  M, similar to the value for pyruvate kinase I. Perhaps other sites of lower affinity exist. We have checked that, with increased concentrations of phosphoenol pyruvate (up to  $1 \times 10^{-2}$  M), fructose-1,6-diphosphate binding is not enhanced, either with pyruvate kinase I or with pyruvate kinase II. We have shown in the preceding paper [5] that form II is a heterotetramer  $L_2L'_2$  and has a specific activity half that of form I. We may suppose that the L' subunits have neither fructose-1,6-diphosphate binding site, nor efficient catalytic site. The absence of efficient catalytic site would easily explain the half specific activity.

Marie et al. [5] have shown that in vitro, a mild tryptic attack is able to transform pyruvate kinase II into pyruvate kinase I. The heterotetramer  ${}^{\iota}L_2L'_2{}^{\iota}$  is converted into a homotetramer  ${}^{\iota}L_4{}^{\iota}$ . This conversion is accompanied by a 1.6-times enhancement of the specific activity. Two hypotheses could be put forward to explain such data: either the peptide removed by trypsin could mask both the fructose-1,6-diphosphate binding and the catalytic sites, or hydrolysis of this

peptide could promote a transconformation of the L' subunits from a form without affinity for fructose-1,6-diphosphate and catalytically poorly or not active towards a form with high affinity for fructose-1,6-diphosphate and catalytically fully active.

In conclusion, the demonstration that the precursor form  ${}^{\cdot}L_2L'_2{}^{\cdot}$  contained two binding sites for fructose-1,6-diphosphate and had only half the specific activity of the  ${}^{\cdot}L_4{}^{\cdot}$  enzyme seems to indicate that a hypothetical  ${}^{\cdot}L'_4{}^{\cdot}$  native form would be unable to fix fructose-1,6-diphosphate and would be catalytically poorly or not active. Thus, proteolytic activation would be indispensable in order that erythrocyte pyruvate kinase reaches its maximum catalytic efficiency.

## Acknowledgements

We are grateful to Dr H. A. Buc for helpful discussion during the course of this work. This work was supported by a grant from l'Institut National de la Santé et de la Recherche Médicale (Contrat libre No. 75.5.089.1).

# References

- [1] Cartier, P., Najman, A., Leroux, J. P. and Temkine, H. (1968) Clin. Chim. Acta 22, 165-181.
- [2] Staal, G. E., Koster, J. F., Kanp, H., Van Milligen-Boersma, L. and Veeger, C. (1971) Biochim. Biophys. Acta 227, 86-96.
- [3] Garreau, H. and Buc-Temkine, H. (1972) Biochimie 54, 1103-1107.
- [4] Marie, J., Kahn, A. and Boivin, P. (1977) Biochim. Biophys. Acta 481, 96-104.
- [5] Marie, J., Garreau, H. and Kahn, A. (1977) FEBS Lett. 78. 91-94.
- [6] Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem. 193, 265-275.
- [7] Bartlett, G. R. (1959) J. Biol. Chem. 234, 449.
- [8] Cartier, P., Leroux, J. P. and Temkine, H. (1968) C. R. Acad. Sci. Série D 266, 1680-1682.
- [9] Monod, J., Wyman, J. and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118.